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Usually large 3D simulations are used to calculate the cosmic microwave 
background anisotropies induced by global scalar fields. By going to the large 
N limit and solving the equations of motion analytically, we can drastically reduce 
the amount of numerical computations needed, while still finding results quite 
similar to the corresponding functions in the texture model. 

1. I N T R O D U C T I O N  

The anisotropies in the cosmic microwave background (CMB) have 
become an extremely valuable tool for cosmology. There are hopes that the 
measurements of the CMB anisotropy spectrum might lead to a determination 
of cosmological parameters like fl0, H0, I~B, and A to within a few percent. 
The justification of this hope lies in large part in the simplicity of the 
theoretical analysis. Fluctuations in the CMB can be determined almost fully 
within linear cosmological perturbation theory and are not severely influenced 
by nonlinear physics. 

There are two competing classes of models which lead to a Harrison- 
Zel 'dovich spectrum of fluctuations: Perturbations may be induced during 
an inflationary epoch or they may be due to scaling seeds, e.g., a self-ordering 
global scalar field or cosmic strings [for a general definition of scaling seeds 
see Durrer and Sakellariadou (1996)]. In the first class, the linear perturbation 
equations are homogeneous. In the second class they are inhomogeneous, 
with a source term due to the seed. The evolution of the seed is in general 
nonlinear and complicated and therefore much less accurate predictions have 
been made so far for models where perturbations are induced by seeds. 
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In this work we discuss an especially simple model with seeds where 
the equation of  motion for the seed perturbations can be solved explicitly. 
We consider an N-component real scalar field qb with O(N) symmetric potential 
V, which at T = 0 is given by V = h(d~ 2 - x12) 2. At low temperatures, T 
< <  r I, d~ can be regarded as constrained to an (N - 1)-sphere with radius 
x I. The scalar field then evolves according to the nonlinear o'-model, which 
is entirely scale-free. In terms of the dimensionless variable 13 = ~b/rl, we 
obtain the equation of motion 

o13 - (13  �9 D 1 3 ) 1 3  = o ( l )  

with the condition 132 = I. The nonlinearity in this equation, -(13 �9 t:313)13 = 
(0~13 �9 0~13)13, contains a sum over N components. In the limit N -+ 2, this 
sum can be replaced by an ensemble average and the resulting linear equation 
of motion can be solved exactly. One finds (Turok and Spergel, 1991) 

[3(k, t) ----- x/-At 3/2 J~(kt) (2) 

The index v is determined by the background matter model and varies between 
v = 2 in a radiation-dominated background and v = 3 in a matter-dominated 
background. The prefactor A is chosen to ensure 132 = 1, 

= [8/tiv~ 2 if v = 2 
'fA (48/t3~ 2 if v = 3  

The components of 13in are assumed to be independent, Gaussian-distributed 
random variables with vanishing mean and dispersion ((13i,)~) = I / N  for all 
values of j .  [Clearly, the variables (13i,)j cannot be completely independent, 
since they obey the condition Xj(13in)} = I.] 

Once the scalar field 13 is known, we can calculate its energy-momentum 
tensor, the induced gravitational field, and its action on matter and radiation 
within linear cosmological perturbation theory. As has been discussed in 
Turok and Spergel (1991), the energy density of a four-component global 
scalar field is already quite close to the large-N limit and there are thus justified 
hopes that this simple model might provide a quite sensible approximation to 
the texture scenario for structure formation. On the other hand, we know that 
nonlinearities, which lead to the mixing of scales and to the deviations from 
a Gaussian distribution, are crucial for some qualitative properties of defect 
models, like decoherence (Magueijo et  al., 1996; Durrer and Sakellariadou, 
1996). In the large-N limit, the only nonlinearities are the quadratic expres- 
sions of the energy-momentum tensor, and thus effects like decoherence 
might be weakened substantially in this model. 
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2. CMB ANISOTROPIES IN MODELS WITH SEEDS 

The coefficients of the angular power spectrum of CMB anisotropies 
are related to the 2-point function by the equation (Padmanabhan, 1993) 

- -  (n) ~ (n') = ~ (2/? + 1)CePe(cos 0) (3) 
/ t ( n - n '  =cos  ,.p) 

For pure scalar perturbations, neglecting Silk damping, the Ce are given by 
(Durrer and Sakellariadou, 1996) 

< ) Ae(k) 

Ce=2[-- 
rr (2e + 1) 2 

where 

k2dk (4) 

Ae _ 1 Agr(k, tdec)Je(kto) -- Vr(k, tde~) j'e(kto) 
2 e +  1 4 

I '~ + k ( ~  - ~)(k, t')j'~(k(t o - t')) dt' (5) 
dec 

For large f this spectrum is corrected by Silk damping, which can be 
approximated by multiplying Ae(k ) with an exponential damping envelope 
(Hu and Sugiyama, 1996). 

We want to consider the situation where fluctuations are induced by 
seeds. We restrict ourselves to scalar perturbations. The energy-momentum 
tensor of scalar seed perturbations can be parametrized by the following four 
functions: fp, the energy density of the seed; fp, the pressure of the seed; fv, 
a potential for the energy flux of the seed; andfir, the potential for anisotropic 
stresses of the seed (Durrer, 1990, 1994) (see below). The linear cosmological 
perturbation equations are then of the form 

~Xj = IWjFi (6) 

where ~ is a first-order linear differential operator, X is a vector consisting 
of all, say m, gauge-invariant perturbation variables of the cosmic fluids (like 
Agr, Vr, and, e.g., the corresponding variables for the cold dark matter (CDM), 
...). F = (fp, fp, fv, f~) is the source vector and M is an, in general time- 
dependent, m )< 4 matrix. 

The genera] solution to equation (6) is of the form 

Xj(t) = G)(t, t ' ) f  i(t') dt' (7) 
iFt 
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where G is the Green's function of the differential operator ~ .  The Bardeen 
potentials (I) and ~ are algebraic combinations of the fluid variables Xj and 
the source functions F~, 

( ~  - ~ ) ( t )  = ps(t)Xj(t)  + Qi(t)Fi(t) (8) 

Inserting this solution in (5), we obtain 

- dt  Gia,(td~, t)je(kto) i - Gv,(td~, t)j'e(kto) Fi(t) 
2e + I ~,i, 

+ k dt  dt '(PJ(t)G}(t,  t ' )Fi( t ' ) )  + Qi(t)Fi(t) (9) 
dee in 

To calculate the Ce we therefore need to know the unequal time correla- 
tions of the seed functions F~ and the Green's functions for the cosmological 
model specified. In general this is a quite formidable task. Here we shall just 
discuss a toy model. A somewhat more complicated example is given in 
Magueijo et al. (1996). 

We consider a pure radiation universe with vanishing spatial curvature. 
In this case, the linear perturbation equations are given by (Durrer, 1994) 

~ = x  2 + 6  ~ A ~ , + 6  (10) 

~ = - @  - 2ef~  (11) 

, 4 
As" = - 5  V~ (12) 

1 
v" = q r _  ~ + ~ A ,  (13) 

where x = kt  and a prime denotes a derivative with respect to x. The energy- 
momentum tensor of the source enters via the combinations f~ and (I)s = 
e( fp/k  2 + 3fv/(kx)). These equations can be combined to a second-order 
differential equation for Ag, alone, 

,, 12 A~, + I x 2 - 6 Ag, = ef~  + x2 +----~ q~s (14) 
Ag" + x :  + 6 x 3 x 2 ~ 6  

with homogeneous solutions 

Dl(X) = cos -- 2 -  sin 

(5) D2(x) = - s i n  x - 2 ~ c o s  
X 



Large-N Limit of CMB Anisotropies 2493 

leading to the Green 's  function 

v/3x' [ s i n ( X - X '  I C(x, x') - x(6 + x '2) (12 + xx') ~------~-] 

[x-  x'~l 
+ + x ' ) c o s t - u - ) ]  (15) 

On superhorizon scales (x < < 1) the solutions of  the homogeneous  equations 
consist of  one constant and one decaying, ~ l/x, mode,  while for x > >  1 we 
obtain two oscillating modes.  The  general solution with source term S(x) and 
initial condition Agr(O) = V r(O) = 0 is 

where 

f: Agr(X) = Gl(x, x')S(x') dx' (16) 

f/ Vr(x) = G2(x, x')S(x') dx' (17) 

3 dG 
G 1 = G and G 2 - (18) 

4 d x  

3. S C A L A R  S E E D  F U N C T I O N S  IN T H E  L A R G E - N  L I M I T  

Let us discuss the source correlation functions of  scalar field sources 
in the large-N limit. The seed functions are given by (Durrer, 1994) 

1 
fp = F, = ~ [[~2 + (Vl3)21 (19) 

1 1 
L = F2 = ~ t~ 2 - ~ (VI3)21 (20) 

f,, = F 3 = A - ' [ ~ .  ~.j].J (21) 

3 1 
f~ = F4 = ~ A-2113,," " [3 a - ~ 8o(V~)Z]'O (22) 

Using the fact that the initial fields are uncorrelated and Gaussian- 
distributed, 

C 
([3,(k)[3j(p)) = ~ 8o~(k + p), C = const. (23) 
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and using the exact solution (2), we find the power spectra and the unequal 
time correlation functions of the seed variables Fi. Below we give explicit 
expressions for the power spectra offp ,  f~, and f.~ and, as an example, the 
unequal time correlation function for fv. These integrals can be evaluated 
numerically, examples of which are shown in Figs. 1 and 2. We define x = 
tk and we set 

Jv(x) 3 Jv(x) J~§ |(x) 
X(X) =- x ~ , q~(x) 2 x" x V-I (24) 

Using these abbreviations, we obtain the somewhat cumbersome expressions 

[32(k, t) = At f d3qq~(qt)tp(Ik - qrt)13i,,(q)13i,,(k - q) (25) 

= - A t  3 f d3q q(k - q)x(qt)x(Ik  - qrt)13i,,(q)13i,,(k - q) (26) (V13)2(k, t) 

I k(k - q) 
fv(k, t) = At  2 d3q ~ q~(qt)x(Ik - qrt)13in(q)13in(k - q) 

x l 0 - S  
i I i l u l J l j  

I00 =- 

I0 

I 

0. I 

0.01 

i . t t | H |  

0.1 

m ~ i J ~ , ~ |  i i r l i H u |  * i i i ~ v g u |  

.k J ~ . J t , , I  , ~ I ~ , H , |  ' l J ' ' ' q l l  

1 10 100 
kt 

(27) 

Fig. I. The source function f~,: In the large-N limit (full line), the approximation used to 
calculate the Ce in Fig. 7 (dashed line) and from a 3-dimensional numerical computation (dot- 
dashed line) for the texture model (N = 4). 
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Fig. 2. The source function fv: As in Fig. I. we plot the large-N limit as full line and the 
approximation as a dashed line. 

1 
[ ( k q ) ( k  2 - k q )  - ~ k2q(k  - q)]  

f 
f ~ ( k ,  t) = At 3 J d3q k 4 

• x(qt)x(Ik  - qlt)[?,i,(q)~,, 'n(k - q )  (28)  

and  s o m e  e x a m p l e s  for  the  c o r r e l a t i o n s :  

( f p ( k ,  t) . f o ( k ' ,  t)) 

_ A  25(k + k ' ) I  
t 2N d3y {~('Y)2~(lY - xl)2 + [y (x  - y) ]2X(y)2x( iy  - x l )  2 

d 

- 2 y ( x  - y)~(y)q~( ty  - x l ) x ( y ) x ( l y  - xl)} (29)  

( f~ (k ,  t) �9 f ~ ( k ' ,  t)) 

= A2 t 5 ( k  + k ' )  I x (x  - y )  N d3y ~ tp(y)x( ly  - xl)  

• [x(x - y)q~(y)x([x - y[)  + xyq~(Ix - Y[)X(Y)] (30)  
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( f~ (k ,  t) �9 f ~ ( k ' ,  t)) 

1 [(xy)(x 2 - xy)  + ~ x 2 ( y  2 - -  xy)] 2 

10 
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0. I 

x lO-*  
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kt 

Fig. 3. The source function f.~ as in Fig. 2. 

= A2t3 98(k  + k ' )  I 
2N d3Y x 8 

• X(y)2x(Ix - yl) 2 (31) 

(f~(k,  t) �9 f ~ ( - k ' ,  t ' ) )  

A 2t r 2 f 
- N x 4 B(k - k ' )  d3y {Ix 2 - xy]2qo(y)x(lx - yl)q~O,r)x(Ix - ylr)  

+ [(x 2 - xy)(xy)]qffy)x(Ix - y[)q~(Ix - y l r )x (y r )  } (32) 

where  we have set r = t ' /t  in the last equat ion.  The behavior  o f  these 
funct ions on very  large and very  small scales can be obtained analytical ly.  
On superhor izon scales,  x --* 0, the power  spectra  for fp, fp ,  and f v  behave  
like white noise. Numer ica l ly  we have  found 

1 f 9.36 • 10 -2 v = 2 
(Ifpl 2) ---->--"  ~ (33) 

x-w Nt 10.31 • 10 -2 v = 3 
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Fig. 4. The unequ',d time correlation function for 92 -- f, + 3fp at fixed t as function of 
t' and k in the large-N limit. Negative values are set to zero. 

l J ' l .066 X 10 -2 v = 2 (34) 
(Ifvl2) x~__,o N-t " L0.805 • 10 -2 v = 3 

t ) '0.8687 x 10 .-2 v = 2 
(If~l:) --o �9 

~-0o N [.0.4694 • 10 -2 v = 3 
(35) 

From general arguments (Magueijo e ta l . ,  1996; Durrer and Sakellaria- 
dou, 1996), superhorizon scales. However,  from (31) we find thatf~, diverges 
at small x like l[x 2. Even though we do not quite understand this result, it 
does not lead to divergent Bardeen potentials if we allow for anisotropic 
stresses in the matter (like, e.g., f rom a component  of  massless neutrinos). In 
this case it can be shown (Durrer and Sakellariadou, 1996) that compensation 
arranges the anisotropic stresses in the fluid, plI  such that f~, + plI  = .~f~. 
Therefore, the anisotropic stresses also contribute a white noise component  
to the Bardeen potentials on superhorizon scales, namely 

t 3 15,169 • 10 -2 u = 2 
X4(If'nl2) ~-~0 N "  [6 .539  • 10 -2 v = 3 (37) 
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In the limit x ~ ~ the source funct ions  decay  like 

X 1-2v 
([fpl2), ([fp]2) ~ (38) 

x-,~ Nt 

x - i - 2u t 
([fvl 2) --0 - -  (39) 

x -~  N 

x-3-2vt3 
([f~rl 2) --'-> (40) 

In Fig. 1 we plot t < If, F 2 > (x) as ob ta ined  f rom (29), and compare  it to 
the cor responding  funct ion found by 3D simulat ions  o f  the texture model .  
Figures  2 and 3 show (I/ t)  < Ifvl z > (x) and (x4/?) < If=lZ(x), respectively.  

T h e  normal ized  unequal  time corre la t ion  funct ions are def ined by 

Ori(k, t)f*(k, t')) 
Ci(k, t, t ' )  = (42) 

x/(I f i(k, t)12){I f i(k, t ')l 2) 

In the large-N limit, the correlat ion funct ions  decay  like power  laws. For  r 
=- t'/t we find in the limit r > >  1, kt' > >  1 the behav ior  Ci ~ r -~, with 

~,p = 3/2, ~/t, = 3/2, 3'~ = 3/2, 7~ = 5/2 (43) 

0 . 8  

o k t :  

1 25 15 
t'/t 

Fig. 5. The same as Fig. 4 for the texture model. The similarity is obvious. The high-order 
oscillations, which are very pronounced in the large-N limit, are washed out or absent in the 
texture model. Whether this is a real feature or just numerical inaccuracy or both is not yet clear. 
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Fig. 6. A cut through Fig. 4 (solid line) and Fig. 5 (dashed line) at kt = 3.9. The central peaks 
are in very good agreement. Secondary peaks do not agree and the decay law for the texture 
model is difficult to predict from these data. 

It is not quite clear to us whether this behavior is reproduced in the texture 
model. Due to the arguments given at the beginning, it may well be that N 
= 4 and N ~ ~ show a different decoherence behavior. Originally (taking 
into account the numerical accuracy of about 10% of the 3D simulations) 
we approximated the decoherence in the texture model with an exponential 
decay law. However, comparing the unequal time correlation functions for 
~2 shown in Figs. 4 and 5 for the large-N limit and a 3D simulation of  the 
texture model, respectively, we realize, that they agree extremely well in the 
numerically most reliable, central region, and the seemingly stochastic higher 
order oscillations also found in the texture model might actually be real (see 
Fig. 6), leading to power-law decoherence. 

Using these source functions, we have determined the CMB anisotropy 
spectrum induced by the large-N limit of a self-ordering scalar field for a 
spatially flat cosmological model with CDM, radiation and baryons. Results 
are shown in Fig. 7. Since decoherence is so weak for large N, we used the 
approximation of perfect coherence, Ci ---- 1. This simplification has been 
used so far for all 'analytic approximations' of O(N) models and, e.g., in the 
case of textures, N = 4, it seems to agree reasonably with numerical simula- 
tions (Turok, 1996). This will certainly be even more so in the large-N limit. 
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Fig. 7. The CMB anisotropy spectrum, obtained by using polynomial fits for the source 
functions as shown in Figs. 1-3. Only scalar perturbations are included. The Sachs-Wolfe part 
is indicated by the dotted line, the dashed line represents the acoustic contributions. Silk 
damping is not included. 

The influence of decoherence on the CMB power spectrum is discussed in 
Magueijo et  al. (1996). 

4. CONCLUSION 

We have shown that the large-N limit of global scalar fields provides a 
model of seeded structure formation where CMB anisotropies can be deter- 
mined without cumbersome numerical simulations and thus with much higher 
accuracy and larger dynamical range at relatively modest costs. Determining 
the correlation functions of the seed variables just requires numerical convolu- 
tion of Bessel functions multiplied with powers. Once the seed correlation 
functions are known, perturbations in matter and radiation can be calculated 
by solving a system of linear perturbation equations, very similar to the 
homogeneous case of inflationary perturbations. 

We believe that the large-N limit has many features in common with 
the texture model of structure formation and thus provides a "cheap approxi- 
mation" to this model. The most obvious difference between the analytic 
limit and the texture model is the decoherence behavior. In the large-N limit, 
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the field evolution is linear and nonlinearities, which are responsible for 
decoherence, enter only via the quadratic expressions of the energy-momen- 
tum tensor. We thus expect decoherence to be somewhat weaker in the large- 
N limit. 

In a forthcoming paper, we plan to work out the large-N limit in more 
detail, and to study the dependence of the resulting CMB anisotropy spectrum 
of cosmological parameters. We also want to investigate more fully the 
comparison of the large-N source functions with the source functions found 
in 3D simulations of the texture model. The limit discussed here provides a 
very useful toy model for structure formation with scaling seeds for which 
decoherence is not important. 
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